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Abstract. Visual communication, in the form of telephotography and
television, for example, can be regarded as efficient only if the amount
of information that it conveys about the scene to the observer ap-
proaches the maximum possible and the associated cost approaches
the minimum possible. Elsewhere we have addressed the problem of
assessing the end-to-end performance of visual communication systems
in terms of their efficiency in this sense by integrating the critical limiting
factors that constrain image gathering into classical communication the-
ory. We use this approach to assess the electro-optical design of image-
gathering devices as a function of the f number and apodization of the
objective lens and the apenture size and sampling geometry of the pho-
todetection mechanism. Results show that an image-gathering device
that is designed to optimize information capacity performs similarly to the
human eye. For both, the performance approaches the maximum pos-
sible, in terms of the efficiency with which the acquired information can
be transmitted as decorrelated data, and the fidelity, sharpness, and
clarity with which fine detail can be restored.

Subject terms: electro-optical design: information; entropy; dynamic-range

compression; image coding, image restoration.
Optical Engineering 34(3), 795-813 (March 1995).

1 Introduction

The problem of visual communication is that of producing
an image that conveys information to the human observer at
one point about a scene that is located at another point. Until
recently. in telephotography and television. for example, the
input terminal of the visual communication channel consisted
solely of the image-gathering device that transforms the spa-
tially varying radiance field reflected or emitted by the scene
into the signal that is transmitted, and the output terminal
consisted solely of the image display device that transforms
the received signal into an image. However, advances in
technology are leading to rapid growth in the capabilities of
analog and digital VLSI processors, even as their cost, size,
weight, and power consumption decrease. Consequently, vis-
ual communication is now increasingly carried out by com-
bining image gathering and display with digital image pro-
cessing. Image gathering is combined with encoding to
reduce data transmission, and image display is combined with
restoration to enhance image quality. So far, however, the
electro-optical design of image-gathering devices and the
digital image processing for encoding and restoration have
remained independent disciplines, following distinctly sep-
arate traditions.

The electro-optical design of image-gathering devices or-
dinarily revolves around two interdependent trade-offs. One
trade-off, in terms of geometrical optics, is widely under-
stood. It deals with instantancous field of view (IFOV) versus
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signal-to-noise rutio (SNR) as controlled largely by the ap-
erture size and focal length of the objective lens together with
the aperture size and responsivity of the photodetection mech-
anism."? Additional factors that may enter into this trade-off
are field of view, depth of field, and exposure time.’ The
IFOV and associated sampling lattice that evolve from this
trade-off establish the angular resolution, or spatial scale, of
the visual communication, ranging from telescopic to
Microscopic.

The other trade-off, in terms of physical optics, which we
address in this paper, is less widely understood. It deals with
the relationship between the spatial-frequency response
(SFR) of the optical (objective lens and photosensor) aper-
tures and the sampling passband of the photodetection mech-
anism as a function of the SNR. The design that evolves from
this trade-off establishes upper bounds on the information
capacity of the visual communication channel at the spatial
scale fixed by the sampling lattice.

Traditionally, the relationship between the SFR and sam-
pling passband of the image-gathering device has been op-
timized to produce the best possible picture when the image
display device reconstructs the received signal into an image
without digital processing.*® For this reconstruction it is
ordinarily preferred to let the SFR extend far beyond the
sampling passband in order to avoid substantial blurring
within the passband, at the cost of aliasing that the resultant
insufficient sampling causes. However, the model of image
gathering that has been used in the prevalent digital-image-
processing literature’” ' takes account only of blurring and
noise. The insufficient sampling has been ignored both in the
assessment of digital image coding (e.g., by rate distortion
theory) and in the formulation of digital image restoration
algorithms (c.g.. the Wiener filter). This failure to take full
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account of the image-gathering process has seriously
impeded the performance of visual communication systems
in which image gathering and display are combined with
digital image processing.

To overcome this impediment, Fales and Huck'® have
developed a mathematical foundation for assessing the end-
to-end performance of visual communication systems by rig-
orously integrating the critical limiting factors that constrain
image gathering into the classical communication theories of
Shannon' and Wiener.'” These theories deal. respectively.
with the efficient transmission of information through a noisy
communication channel and the minimum-mean-squared-
error restoration of the input signal to the channel from the
received signal. The inclusion of the image-gathering con-
straints into these theories allows the designer to assess visual
communication in terms of three intuitively attractive criteria:
the information capacity of the image-gathering device, the
theorctical minimum data rate at which the acquired infor-
mation can be transmitted, and the maximum fidelity with
which an image can be restored from the received data. Itis
an agrecable consequence of this approach'® '® that the
image-gathering device that is designed to maximize the in-
formation capacity also tends to maximize the information
efficiency with which decorrelated data can be transmitted
and the sharpness and clarity as well as the fidelity with which
images can be restored with the Wiener filter.

In addition to the spatial properties of the radiance field.
the designer must often deal with its wide dynamic range.
Radiance fields in natural terrestrial environments exhibit
dynamic variations up to 10'" : 1, ranging from the darkest
visible extended surface to the brightest patches that one
commonly encounters.'” The dynamic range of photosensors
is substantially lower. For photosensor arrays, such as charge-
coupled devices (CCDs), the dynamic range is ~10% 0 1,
ranging from the noise level to the highest signal level. The
preamplifier that reads the signal out of the photosensor array
to the analog-to-digital converter further limits the dynamic
range to ~3x 10* : 1. The dynamic range of image display
media is still lower. For film transparencies it may approach
107 : 1, but for film prints it is only ~10: 1, ranging from &
reflectance of ~0.8% to 80%. Within this narrow dynamic
range itis possible to produce up to 64 perceptible gray levels,
but one usually encounters less than 32 in practice. Hence.
it is often desirable to compress the dynamic range of the
acquired signal as early as possible in a way that best pre-
serves the reflectance boundaries and topology of the scene
while suppressing the temporal and spatial variations in the
scene illumination. To this end, we combine image gathering
with dynamic-range compression, similarly to the retinal pro-
cessing in human vision.

In Sec. 2, we present a mathematical model of the visual
communication system together with the criteria that we use
to assess its performance quantitatively. This assessment is
mathematically limited to a linear (small signal) analysis;
however, as we show later (in Sec. 4), the linear optimization
has a significant effect on the performance when nonlinear
transformation is added. Next. in Sec. 3, we characterize the
electro-optical design of image-gathering devices. This in-
cludes the human eye and recent developments of retina-like
analog VLSI processors such as Mead's *silicon retina.”*"
The comparison of the informationally optimized electro-
optical design with the early stages in human vision is ob-

796 / OPTICAL ENGINEERING / March 1995 / Vol. 34 No. 3

viously of interest because these stages are constrained by
the same critical limiting factors as visual communication.”!
Finally, in Sec. 4, we evaluate the performance of the visual
communication channel as a function of the electro-optical
design and the dynamic range compression, considering both
image reconstruction and restoration. The ditference between
these two image representations is important: whereas re-
construction is concerned with producing a continuous rep-
resentation of the digital owpur of the image-gathering
device, restorution is concerned with producing a represen-
tation of the input 10 this device.

2 Mathematical Model

2.1 Visual Communication Channel

Figure | depicts a model of the visual communication channel
that combines image gathering and display, respectively, with
digital encoding and restoration. Mathematical assessments
of this model by communication theory are constrained by
the assumptions that all processes are linear and isoplanatic,
and that the radiance field and photosensor noise amplitudes
are Gaussian, wide-sense stationary, and statistically
independent.

Image gathering transforms the continuous radiance field
L{x.y) into the digital signal

s(xy) = KLy =) ] o)+, (e + i, () (la)
where K is the steady-state gain of the lincar radiance-to-
signal conversion, T(x,v) is the spatial response of the image-
gathering device, and n,(x,y) and n (x.v) are the additive,
discrete photosensor and quantization noise, respectively.
The symbol = denotes convolution, and the function

M(.\‘.A\') =XY >, 2 d(x —Xm,y— ¥n)

m=—r n= - %

denotes sampling in the (x,y) rectangular coordinate system
of the image-gathering process with sampling intervals (X. V).
This sampling lattice fixes the spatial scale at which the com-
munication channel operates. The treatment of quantization
as an additive noise can be justified by Roberts’ method for
converting quantization noise to random noise of the same
rms value.®>! This conversion establishes a mathematical and
perceptual equivalence between random and quantization
noisc. The Fourier transform of this process is

s(uw)= [Ki(v.w)f(v,w)]* l_|(v,u))+ ;}I,(v,w)+ fz‘l(v,m) ,
(1

where L(U.(x)) is the continuous radiance-field transform,
f(u,w) is the SFR of the image-gathering device, fz,,(v.u)) and
n(v.w) are the discrete noise transforms. and (v.w) are the
spatial frequencies with units of cycles per sample. The
function

—

lv.w) = 2 2 6(U-%.m-%)‘8(u,m)+A\(U.m)

is the Fourier transform of the sampling lattice, where 8(v.w)
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Fig. 1 Model of the visual communication channel.

is the Dirac delta function and M\ (v.w) represents the sam-
pling sidebands. The associated sampling passband

has area |B| = 1/XY.

The analog-to-digital conversion is done with k levels for
7)-bit quantization, where m = log, k. This conversion is sub-
Ject to the assumptions that the quantization is uniform, the
error of any one sample is uncorrelated with that of any other
sample, and the signal is equally likely to occur anywhere in
the quantization interval — c¢o,/ k to co / k. The two param-
eters that define this interval are the variance o7 of the ac-
quired signal given by (disregarding the photosensor noise)

!
2y

X lw| <

B= [(u.w). v <

(rf:jf b, (v,w)| T W) dv do

and the constant ¢ that adjusts the intervals of the quanti-
zation. Consequently, the acquired signal is quantized over
the dynamic range of —co, to ca . and signal values outside
this range are assigned to either 0 or k — 1. We let ¢=\/3,
for which the dynamic range encompasses 92% of the signal.
This value of ¢ relates information to data so that the theo-
retically highest information efficiency (as given in Section
2.2) is normalized to unity.'®'” Finally, it is convenient to
assume that the photosensor noise has a white power spectral
density (PSD) with variance o,

Restoration readjusts the magnitude of each sample of the
digital signal s(x,v), interpolates between the samples, and
transforms the digitally processed signal into the continuous
image R(v,y), which has the Fourier transform
Ruw) =K 's(vw)¥.0). The Wiener filter W(v,w), which
minimiAzes the mean squared restoration error (MSRE) be-
tween L(v.w) and R(v,w). can be expressed as'® '™

‘i’(u,u))z

(f);_(u.u))’f *(u,w)

(f)}_(v.w)\*f(v.w)|: *’_“(v.w) +(Ko, fo,) *+ (Ko, lo) k™

where @ (v,w) =, 2(f>,,(u,u)) is the normalized PSD of the
radiance field with variance a7, Ka, /o, is the rms signai-to-
noise ratio (SNR) at the photosensor output, and (K, /o )k
is the corresponding SNR for the quantization. As imple-
mented here, this filter suppresses the blurring and raster
effects of the image display process by interpolating between
the acquired samples with a display lattice that is four times
denser than the sampling lattice. This interpolation is depicted

inFig. 1 by the symbol ||| (x.v). A denserimage display lattice
does not perceptibly improve the visual quality of the restored
image, whereas a coarser lattice does reduce the visual qual-
ity. Reference 22 presents a filter that minimizes these re-
ductions in visual quality even if, in addition to a coarser
lattice. the computational support is constrained to further
reduce the complexity of processing.

The PSD @, (v.w) of the radiance field L(x,y) within an
isoplanatism patch A is assumed to be’*-?

R R
2oy

; (3)

b (vw)= —————
[T+ 2mpp) |7*

where p*=v’+w” (Fig. 2). Figure 3(a) shows a target of
random polygons that has this PSD. The target is generated
by a Poisson process with mean distance w (measured in
sampling intervals) between radiance-field transitions and by
an independent Gaussian intensity distribution with variance
o7 at the transitions.”® The mean distance p between the
edges of the polygons is treated as the mean spatial detail of
the radiance field. That is. when X =Y =y, the scale of the
sampling lattice coincides with the mean spatial detail. Fig-
ure 3(b) shows a target of resolution wedges that we include
to facilitate assessments of the fidelity with which fine detail
near the sampling lattice can be restored.

2.2 Performance Criteria

Information theory treats the restored image R(x,y) as a re-
ceived message that gives information about the radiance
field L(x,y) and accounts for degradations as loss of infor-
mation. In this sense, the information 3 can be expressed

.dsl(\——]x

OPTICAL ENGINEERING / March 1995/ Vol. 34 No. 3 /797



HUCK et al.

103 F T Y\HTTTI T 1 11 Hr‘ T TTTHU’ T X!\TTT_
102 = 3
e — E

_— 1L =
3 Ve o
=) - 3
= r ]
€ 40 L 3
107! I =
10°2 '3 VIR R W\ Y1 . N
10" 102 107! 100 10!

v,

Fig. 2 Normalized PSD <i{(u,m) of the random radiance field with
mean spatial detail u relative to the sampling lattice.

1
171“—'—JJ’ logy[l+
2105 B

‘i’,’v(u.m)|’IA'(v.uJ)|2 ]

(f>[(u,m)|'f(v.u))|3 *J\ (vw)+ (Ko, /o)~ 2+ (Ko lo) Pk

Xdv dw . (4)

The information ¥ that the acquired signal contains, given
here as the average per digital sample. is Shannon’s rate of
transmission of information, or information rate. ¥ reaches
its theoretical upper bound

l . 3
H,.= 518 logy|1 + (Ko, fo,)°] (5)
when
. ot vwe B,
P, (vw) = {(), elsewhere,

 (0w) = I. (uwe B,
Tiv@)= 0, elsewhere,

and the quantization noise is negligible. This upper bound is
Shannon’s channel capacity, which is constrained only by
the bandwidth B and SNR Ko, /o,. However, the image-
gathering process inevitably bars 3 from reaching X, be-
cause ¥ is constrained also by the PSDs @, (v.w) of natural
radiance fields and by the realizable SFRs 7(v,w) of optical
apertures, both of which decrease smoothly with increasing
spatial frequency.

The information J¢ for visual communication reaches its
maximum value when the sampling passband B best matches
the radiance-field PSD &, (v,w). We designate this maximum
value as the information capacity J€ . Ordinarily, it occurs
when the sampling interval is near the mean spatial detail .
Comparisons of the information capacity . with Shannon’s
channel capacity Jt,, reveal that the image-gathering process
constrains . to about half of ¥,."*"
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Fig. 3 Targets: (a) random polygons with mean distance =3 per
sample and (b) resolution wedges.

The theoretical minimum data rate ‘€ associated with the
information ¥ is given by the mutual information between
the acquired signal before quantization and its quantized rep-
resentation.'? It can be expressed as'®

!
€= ff Iog,[ 1
20y

(IA>,"(U,w)| 7 (VW) % M(U,w) +(Ka, /o,)” 2
+ = dv do

(Ko, /o) "k ™?
(6)

This expression for € represents the entropy of completely
decorrelated data. It sets the theoretical lower bound on the
data rate that can be attained with lossless encoding. To dis-
tinguish entropy from information, we measure entropy in
binary units (bits), as is common for data, and information
in binary information units (bifs).

Note that the sampling sidebands (aliasing) and photo-
sensor noise, which reduce X in Eq. (4). increase ‘¢ in Eq.
(6). Hence, ¢ approaches its lower limit ¥ only when these
distortions are masked by coarse quantization. About 80%
to 90% decorrelation 1s obtained when either differential
pulse code modulation (DPCM) or critically sampled mul-
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tiresolution decomposition is combined with Huffman en-
coding.' The decomposition does not improve on the de-
correlation produced by the computationally much simpler
DPCM.

[t is intuitively attractive to characterize the information
efficiency of the image-gathering process by the ratio #/'¢
and to adjust this ratio so that its theoretical upper bound is
unity. This adjustment occurs naturally for the conditions of

the PSD (I),‘(v.w) and the SFR 7 (v,w) that lead from J given
by Eq. (4) to its upper bound ¥, given by Eq. (5). These
conditions are implictly included in Eq. (2) for W(v.w), Eq.
(4) for K. and Eq. (6) for €. An important result ot carlier
assessments,'®"® which we also show here, is that the electro-
optical design that maximizes the information capacity ¥,
for a given SNR Ko, /0, also maximizes the information
efficiency J€ /€. But there always remains a trade-oft, for
cach design, between K, and K_./¢€ in the sclection of the
number of quantization levels.

The fidelity F is a measure of the similarity between the
radiance field L(x,v) and the image R(x.v) as defined by?7-*

) L{x,y)—R(xy)|* dv dy
leiff,\ [L(x)y) (’\_\)| 4 (7)
faLe]? dx dy

The maximum value of F for the image R(x.v) restored by
the Wiener filter W(v,w) is'®!7

R :ff dh),"(v.m)’?(v.w)‘l}(v,w) dv, dw

fJ‘ y(uw)(1 =2 ") dv do (8)

where H{u,w) is the spectral information density given by the
integrand of Eq. (4). Another important result of curlier as-
sessments.'™!7 which we also show here, is suggested by the
dependence of ¥ on J(v,w); namely, that the image-gath-
ering device that is designed to maximize the information
capacity J_ ordinarily can be relied on to maximize the fi-
delity of the Wiener restoration. The apparent lack of reso-
lution and sharpness of Wiener restorations is not, as was
long believed, a shortcoming of the fidelity criterion.'®"”
Instead, it is the failure of the traditional formulation of the
Wiener filter. like that of other restoration filters published
in the prevalent digital image-processing literature.” '? 1o
allow fully for image gathering and display. When the Wiener

Picture
element

Objective
lens array

filter tully includes these processes, then it produces images
with improved resolution and sharpness as well as fidelity.
Spatial details as small as the sampling interval are usually
resolved. However, these images are also more sensitive to
visual defects such as aliasing artitacts and photosensor noise.
These defects diminish and the visual quality of Wiener res-
torations improves in clarity with increasing information,
cven after the maximum fidelity has essentially been reached.
until this improvement is gradually ended by the unavoidable
compromise among resolution, sharpness, aliasing urtifacts,
and ringing. The visual quality may often be enhanced at a
small loss in resolution and sharpness by u)mbininé the Wie-
ner filter with a modest amount of smoothing.'*

3 Electro-optical Design

3.1 Design Parameters

Image-gathering devices are commonly specified by their
IFOV and SNR. (To avoid possible confusion, it should be
pointed out here that the SNR is given elsewhere more com-
monly for the average rather than for the rms signal value.)
These specifications can be injected into the image-gathering
model nwen by Eqs. (1) via the steady-state gain (in am-
peres) -

i
K:/\-.a-mf LOVry) da= 4; Loorn dh. O

O

where 4 = D7/4 is the area of the objective lens aperture,
Q= (y/{,)=(y/f) steradians (sr} is the solid angle of the
IFOV, and F = f/D is the lens f number. Other design pa-
rameters are identified in Fig. 4 and Table 1. The SFR 7 (v.w)
()f the imu“c gathering device 1s the product of the SFR

7(vw) and 7 (v.w) of the ()bjLLllVC lens and photosensor
aperture, rLschn\ elysie.

Th(v.w):'E,(U.m)ﬂ,(h.m) . (1))

The objective lens is characterized in Sec. 3.2 by its dif-
fraction-limited performance. However, few real lenses
achieve this performance over their whole tield.*** The pho-
tosensor array 1s characterized in Sec. 3.3 for the square and
hexagonal sampling lattices, and lateral inhibition with these
two arrays is characterized in Sec. 3.4, 1t is common, as we
do here, to characterize the objective lens by its coherent
cutoft frequency 1/2MF und the optical geometry that the

Photosensor

Y

Fig. 4 Optical configuration of the image-gathering device with photosensor array.
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Table 1 Design parameters.

Parameter Symbol Unit
Lens aperture diameter D m
Lens focal length f m
Photosensor aperture spacing X m
Photosensor aperture width ¥ m
Photosensor distance from lens £, m
Wavelength /{ um
Phoutosensor responsivity r(A) AW
Spectral radiance L(}) Wm 2sr~pm™!

objective lens forms with the photosensor aperture by the
optical design index y/2AF.

3.2 Objective Lens

The SFR, or normalized optical transfer function (OTF),

T (vaw) of a diffraction-limited lens with a circular aperture
FRY IR
st

T (VW)=

7 P+ )P0 —pl2e") expliupy’y dv', dw’

” PO &PV D) dv do'

(rn

vot=1 .

clsewhere,

— 3 3 1 .

p=(r +w) "2NF .

and r(U,m) is the transmittance. The dimensionless spatial-

frequency variables U, w, and p are normalized to the coherent
cutoff frequency /2N F. The defocus parameter u is

D ’
u%1 Al -—)
2A {

[y

_m At
VA

where A= |(,— (‘I,[. and £, is the image-plane distance from
the lens (Fig. 4).

Hopkins*!' * has formulated the SFR of a defocused dif-
fraction-limited lens with a clear aperture, i.e., H{V.w) = |, and
Mino and Okano*™ have extended this formulation to include

1.0
0.8
0.6
0.4

1:1(\),0))

0.2
0

two circularly symmetric variable lens transmittance shad-
ings that reduce defocus blur. OTFs for different shadings
also can be obtained directly by numerical integration of Eq.
(11).** Figure 5 shows the SFR 7 (v.w) for a clear and two
shaded apertures. The shadings are given by
1oow)=1-p" (12)
with B = 1 and 2. The ratio & of light transmitted through the
shaded aperture to a clear aperture. i.c.. the effective trans-
mittance in Eq. (9), is

1

kzzf plem|? dp . (13)
0

As can be seen, the shading reduces the effect of defocus on
the SFR of the objective lens. However. this improvement
can be gained only at a loss of transmittance.

The angular sensitivity of the eye’s photoreceptors (i.e.,
the Stiles-Crawford effect®®) produces a similar result to the
variable lens transmittance shading. Metcalf®” has shown that
the angular sensitivity of the photoreceptors can be consid-
ered as equivalent to a variable pupil aperture transmittance,
and Carrol*® has shown that this variable transmittance pro-
duces a SFR that is similar to the one given by Fig. 5(b) for
B =2. However, the advantages of this angular sensitivity,
or its equivalent aperture shading, have apparently not been
widely recognized; namely, that it enhances the SFR within
the photoreceptor sampling passband and renders the SFR
less sensitive to defocus.

3.3 Photosensor Arrays
Figure 6 depicts two photosensor arrays characterized by
7, (x0l[(xy) and 7 (vo)x|[(v.w). For the conventional

square array™’

2 x| <vy/2, n<vy/2 .
T ey — 4 Y el <y <y (L40)
/ 0 clsewhere,
T (vw) = sincyv sineyo, (14b)
M(A;,_\'):X2 E z SMx—Xmy—Xn) , (15a)

02 1 1 1 ] J ]
0 04 08 12 16 20 0

v,0

(@)

04 08 12 16 20 0

0,0

(b)

04 08 12 16 20
0,0

(c)

Fig. 5 SFRs of diffraction-limited lens with clear and shaded apertures for a coherent cutoff frequency
1/2x F-1 and several values of the defocus u: (a) clear aperture, k- 1, (b) shaded aperture, 3 -2
and k= 0.33, and (c) shaded aperture, 3 =1 and k- 0.17.
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ﬂ_[(v.w): z 2 S(U*%,w—ﬁ) . (15b)

nm= —"% n= X
and for the regular hexagonal array™®

yooVv3
=5 3

l ’
SRS

[£9)

ta

<
)
‘z\

'r,’,( Lv) =
0 elsewhere, (16a)

 00) 1] . (y'v) il ( v )
T (uw)=Zysincf —= | | cosmy' | —=—w
! 3 V3 2T \V3

i 1 [ v N )
sinezy'| —=+w
2P\
teosT [ R ( v )
COsST —=+w | sincz —
27 \V3 Y \\3
1T t
+cos< yf_v)
V3
e () ek (2
Xslnczy Zw smczy \_+u)
(16b)
,\/’r‘g , 2 s
Wreew=—x 2 - 2
V3
XS .\'fTX'(m+n)..\'V;X'lmfn) (17a)

~ - S + —
i = SN 8(v(m n)y  m n)) (17b)

i~ “w '
ViX' X

AT

The sampling passband

R l 1
BZ{(U,wJ: !U'<§» w1<2—x}

i
o6

I :
B —— iy
(a) (b)

Fig. 6 Photosensor arrays: (a) square and (b) hexagonal.

of the square lattice has area |B| = 1/X2, and the sampling
passband

. 1 ) V3wl
B =1{(w) v|<— —+ <—=
V33X 2 2 V3X'

of the hexagonal lattice has area |B'| =2/\/3X ">, The areas
|B| and | B'|, and hence the sampling densities of the square
and hexagonal lattices, are equal to each other when the
dimensions X and X' are such that X = (\/3/2)”
X' '=093X".

Past comparisons of the square and hexagonal lattice have
been based on the premise that the signal spectrum is cir-
cularly symmetric and bandlimited.***" Given this premise,
it has been shown that the hexagonal lattice optimizes the
density with which the circularly symmetric sidebands can
be arranged in the spatial-frequency domain without overlap,
permitting exact reconstruction of the signal with a minimum
number of samples. In particular, Peterson and Middleton™
have shown that the contiguous sampling sidebands cover
90.8% of the spatial-frequency domain for the hexagonal
lattice, compared with only 78.5% for the square lattice. Con-
sequently, as Mersereau™ has shown, the hexagonal lattice
can have 13% fewer photosensors (and correspondingly
larger photosensor areas) than the square lattice for the exact
reconstruction of circularly symmetric, sufficiently sampled
signals.

3.4 Lateral Inhibition

Figure 7 depicts a hypothetical mechanism that adds lateral
inhibition to the two photosensor arrays. The diagram shows
only those interconnections that form a single neighborhood
subtraction. The subtraction is performed with either eight
neighboring photosensors for the square array or six for the
hexagonal array. For digital VLSI implementation. many
more interconnections are required so that each photosensor,
in effect, serves once in the central position and either eight
or six times in the neighboring positions. However, for analog

a=0.18
b =0.07

s(x.y)

(a)

c=1/6

s(x.y)

(b}

Lens Elements

Neighborhood
of sensor array  signal processing

Fig. 7 Photosensor arrays with lateral inhibition: (a) square and (b)
hexagonal.
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VLSI implementations, this circuit can be implemented with
a relatively simple resistive network.™
For the square array. the spatial response becomes™

L ’\‘ \ v _\'\
Tpl(’\'.\.)*f"(c) X Y +al U( ;’

-7 L +7 (i L (18a)
"M\X 3] \X Y ' ’

where £ (0={=1) is the lateral inhibition index and 7,(x.y)
is given by Eq. (14a). The corresponding SFR is

(v.w) 7/\(§)1:I,(v.w)| | —4dal(] — OS2 XU — cos T Xw)

Tpi

+4bL1 =2 cos*mXu)(l =2 cosmXw)] .
(18b)

where 1: (v.w) is given by Eq. (14b). Only the form of

I”(U w) sh()uld be used to characterize the SFR of the pho-
tosensor array with lateral inhibition. The factor A({) musl
be associated with the photosensorand aliased noise because™
the normalization of '?/,,(U.w) is intimately tied to the gain
constant K. The SFR '?,,,(u.w) most closely approaches cir-
cular symmetry when ¢ =0.18 and »=0.07.

If electronic noise sources other than the photosensor are
disregarded, then the output noise level is

b R 2
(r/”:{A(Q)I[l+<2+;)§“] T,

Both the signal power and the aliased noise power are pro-
portional to |A(L)| 2. Therefore, the gain |A({)] in the SNR
expression Ko, /o, cancels, and one may choose any nor-
malization factor A({) as long as the noise o, is replaced by
the o,,;. Here we let A({)= |. Hence, the increase in noise
that lateral inhibition causes for this hypotethical circuit is
at most a factor of 1.13 when { = 1.

Similarly, for the hexagonal array, the spatial response
becomes™!

41
TI,,(\\ A(C)[T;,(_\'._\')f; z
= m(.ll:z # ”" I )
A V3, X’
T .\'—TX (m+n), ,"_T(”“”) L y=X,
{(19a)
where 7, (x.v) is given by Eq. (16a). The corresponding SFR
is

7y

T,”(U(x) y=AL)T] (U(o)( =312 cos(2mX ')

0‘
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+2 cosmX (VAU +w) 4+ 2 cosTX vam)])

(19h)

where ’|:,',(U.(1)) is given by Eq. (180). The noise , 1s now
replaced by

o, =

which for A({)=1 is at most a factor of 1.17 when {=1.

3.5 Information Capacity

Figures 8 and 9 characterize the information capacity J(, as
a function of the optical design index y/2XF for several
SNRs Ko, /3. The noise variance o includes both pho-
tosensor and quantization noise. The objective lens is clear
in Fig. 8 and shaded in Fig. 9. Both tigures provide for the
square and hexagonal photosensor array lattices, either with-
out lateral inhibition (= 0) or with maximum lateral inhi-
bition (L= 1).

The curves show that # depends critically on the optical
design index v/2 X F. The information capacity is irrevocably
constrained to be ¥, < 3 bifs, regardless of the SNR. however
high it may be, if the optical design index for a diffraction-
limited objective lens falls outside the range 0.3 <<vy/2AF
<().6. Within this range, the information capacity reaches its
maximum value for the SNR Ko, /o, =256 when y/2\NF
==().35 for the clear lens and when y/2 N F=0.4 for the shaded
lens. Then, ¥, ~5 bifs without lateral inhibition and ¥ _=4.5
bifs with maximum lateral inhibition. € is a little lower than
these values for the clear aperture and square sampling lattice,
and it is a little higher for the shaded aperture and hexagonal
sampling lattice. However, X depends far more on the op-
tical-design index and the SNR than on the lens shading,
sampling geometry, or lateral inhibition.

To characterize the dependence of K on the electro-op-
tical design in more detail, Figs. 10 and 11 illustrate the
responses of the image-gathering device for the square and
hexagonal arrays. respectively. As can be seen, the SFRs of
the photodetection mechanism extend far beyond the sam-
pling passband B even for contiguous apertures. Therefore,
to optimize the information capacity ¥ . the objective lens
must suppress the out-of-band portion of the SFR. The exact
amount of suppression becomes increasingly critical as one
tries to improve J, by increasing Ko, /oy,

Figure 12 shows that Gaussian responses closely approx-
imate the SFRs T(v.w) of the image-gathering device. This
allows us to model the SFR of image gathering with lateral
inhibition by the difterence-of-Gaussians (DOG) function

f(v.w:E.C)ZGXpli*(p/&)z] -1 L’XP[ —(1-(“)/&)1] N GO))

where, as Fig. 13 depicts. £ is the ()pliual response index that
controls the relationship between T and B(u . the
trade-off between aliasing and blurring). and { is the laleral-
inhibition index that controls the dynamic-range compres-
sion. The DOG response for { =1 closely approximates the
Laplacian-of-Gaussian (V2G) response. where V7= d7/ax-
4+ 7 /0v? is the Laplacian operator. This operator, in eftect,
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Fig. 8 Information capacity i, as a function of the optical-design
index y/2 A F for several SNRs Kir, /. The results are given for a
clear objective lens and the (a) square and {b) hexagonal photosen-
sor arrays with contiguous apertures. The lateral inhibition is either
{=0o0r1.

enhances the radiance-field transitions after those transitions
have been smoothed by the (approximately) Gaussian re-
sponse of the image-gathering device.

3.6 Human Vision

Early vision is constrained by the same critical limiting fac-
tors as visual communication. The resolving power (or sam-
pling passband) of all eyes, in invertebrates as well as in
vertebrates, appears to be limited by the difficulty of confining
light within the outer segment of a photoreceptor.'” Center-
to-center spacings of foveal cones less than 2 wm have never
been found, regardless of the size of the eye.*?> Moreover.,
the pupil f number remains remarkably constant in a variety
of species., ranging from humans to birds of prey of widely
different sizes.*> The sensitivity of the eye appears to be
limited by the thermal stability of the photosensitive pigments
of the photoreceptors. Because “*dark™ noise is extremely
low, equivalent to only a few quanta of light,'” the sensitivity
essentially 1s limited by photon noise rather than the statis-
tically independent noise assumed in this assessment.

The human eye as a whole can encompass the wide dy-
namic range of the natural radiance ficlds that one commonly
encounters. If one allows for changes in pupil (or lens) di-
ameter and for optical losses, then the dynamic range of the
radiance incident on the retina reduces to -~ 107 : 1. Barlow'”
estimates that the number of distinguishable intensity levels
in this dynamic range 1s =200. Retinal processing seems to
reduce this number of levels by a factor of =5 to the upper
limit of =40 levels that each nerve fiber can transmit from
the retina to the visual cortex within ~1/20 s 10 avoid pro-
longing the reaction time.

The eye’s pupil diameter is =25 mm in bright light,
and the effective focal length is f= 17 mm (i.c.. '=6.8). The

Ka, fo,
6
5
4
H, 3
2
1
0 J
6
5
4
H, 3
2
1 .
1 1 ] 1 1 )
0 02 04 0608 10 12 0 02 04 06 08 10 1.2
Y[2XF Yf2AF
(a) (b)

Fig. 9 Same as Fig. 8, but for a shaded objective lens with 3 =2.
The symbol ® marks the performance of the human eye.

photoreceptor spectral responsivity is centered around
A=0.56 wm, and the width of the contiguous foveal cones
arranged in a hexagonal lattice is y' = 3 wm. Hence, the IFOV
v/ f=0.18 mrad = 0.01 deg, and the optical design index
Y /2N F=0.4. Finally, the angular sensitivity of the eye’s
photoreceptors produces*”* a similar effect to the lens ap-
erture shading for 3 =2.

The number of distinguishable levels, v, can be related to
the SNR K,/ by

Loy

L:[]+(KU‘I'/(T‘\():| - (21)

According to this relationship, the v=200 distinguishable
levels are equivalent to a SNR of Ko, /o,=256 (for p=1
and {=0.3)."° Hence, there exists an intuitively appealing
correspondence between the design of the human cye and
that of an image-gathering device that is informationally op-
timized. as characterized in Fig. 8(b) for y'/2AF=04,
Ko, /g, =256 It follows that the eye’s information capacity
is H =4.5 bifs (or 23 information levels). This performance
is robust to changes in pupil diameter. As diffraction blur
decreases with increasing diameter. aberrations increase.'”
This compensation has not, to our knowledge, been exploited
for digital cameras, cven though it could improve their per-
formance and occasionally also reduce the cost of their optics
simply by relaxing constraints on aberrations.

If the DOG function given by Eq. (20) is used as a basis
for modeling the angular response of the human eye, then its
response for the optical design index y'/2X £ = 0.4 is the one
showninFig. 14. This DOG function is the best-known model
of receptive fields and has been used successtuily to model
the spatial and spatial-frequency responses for individual
neurons®* in both the retina and the lateral geniculate nu-
cleus (ILGN). Measurements of the highest-resolution pro-

OPTICAL ENGINEERING / March 1995 / Vol. 34 No. 3 / 803



HUCK et al.

Objective lens

I,
(ORI
I."."""\‘:\‘::“&i‘
il 0‘0‘.‘... ‘\ ‘1\‘“

Combined response

i
iy
i

0 04 08 12 1.6 20

v,0
1.0
0.8+
0.6
P
/D g 04
F7AR0N =]
At o 0.2
it I <o .
A
AR ol
e
ity l,,l,n.‘ Ay “\\\\\\\\
I,,’l, K% .C‘\‘\\“ %\\l “u 3 _0' 2
o 2
_0' 4 11 1 L
0 04 08 12 16 20
0,0
1.0
T (v,00) 0.8
=z 0.6}
‘ )
f © 0.4
A '
S
O 0.2

0 04 08 12 1.6 20
,0

(c)

Fig. 10 Spatial responses and SFRs of the image-gathering device with the square photosensor array
and the clear objective lens. The optical design index v/2x F=0.42.

cessing in human vision have been limited to anatomical and
perceptual data, neither ot which can provide direct infor-
mation about the angular response. The gap in physiological
data is of necessity filled by other primate studies, especially
of the macaque monkey, whose vision is considered to be
similar to human vision. Moreover, these studies of neuron
responses have emphasized the LGN, i.e., the target of the
optic nerve tract from the retina rather than the retina itself,
However, it seems reasonable to assume that the highest-
resolution neurons in the retina. the midget ganglion cells,
correspond directly to their counterparts, the parvocellular
layers of the LGN, and that both of these are the neural
structures responsible for the highest-spatial-resolution pro-
cessing in human vision.

Anatomical measurements of neural structures in the retina
indicate that the IFOV per cell is 0.023 deg.”” which cor-
responds closely to the center diameter of the DOG model
in Fig. 14(a). Physiological measurements of primate retinal
responses are consistent with this center dimension, but differ
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about the shape and extent of the surround response. ™ One
type of surround resembles the DOG response based on near-
est neighbors but has an additional positive annular response.
The other type has a very wide weak surround about 30 times
larger than the center. Of course, the surround response does
not affect the finest detail that can be resolved, but rather
deals with the lower spatial frequencies. It is, therefore,
noteworthy that the second response, with the wide but weak
surround. when coupled with a log intensity response, be-
comes a central element in several lightness theories.”
Physiological measurements of contrast sensitivity and
dynamic range at the highest resolution of processing have
been largely contined to the LGN neurons. Most studies are
consistent in finding that the contrast sensitivity for the parvo
cellsis only about 10 : I but covers arelatively large dynamic
range.™ Perceptual measurements indicate a contrast sensi-
tivity that is even coarser at the highest spatial frequency.
only about two shades of gray,™ but at lower spatial fre-
quencies approaches 200 : 1. Recent measurements also sug-
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Fig. 11 Same as Fig. 10, but for the hexagonal photosensor array and the shaded objective lens with

[3 = 2. The optical design index y'/2\ F=0.34.
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Fig. 12 Informationally optimized SFRs for three SNRs: (a) Kir /iy -= 16, (b) Ko /o,=64, (c) K,/
o n=256. The SFRs are given for the clear and shaded (3 = 2) objective lens and the square photo-

sensor array with contiguous apertures (v - X= 1). Also shown are Gaussian approximations
SFRs.
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Fig. 13 Difference-of-Gaussians (DOG) SFRs for (a) (=0, (b) £€=0.3, (¢) £=0.4, and (d) £=0.8.

0.20

0.10 |-

0.05 -

t(x,y;8.8)

-0.05 | l 1 1 1 [ 1 J
-04-03-02-01 0 .01 .02 .03 .04
X,y (degree)

(a)

Qdr——————-~-=-=-- 18

0.2 -

t(v,0:§,8)

A

01 -

! ] ] | |
0 10 20 30 40 50 60 70
v,w (cycles/degree)

(b)

Fig. 14 DOG model of human visual response: (a) angular response
in degrees, and (b) angular frequency response in cycles per de-
gree.

gest a variety of nonlinear interactions in visual processing
in addition to the log intensity response, which provides dy-
namic-range compression, adaptive contrast, and contextual

sensitivity >3

3.7 Analog and Digital VLS

Focal-plane processing may be implemented in a number of
different ways, if we take the term to mean processing within
a camera but not necessarily within the image plane proper.
Pure image-plane processing is realized in Mead’s *'silicon
retina,”” where photosensor territory is sacrificed for pro-
cessing territory with an analog VLSI resistive network. >’
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This disadvantage can be overcome by moving the analog
processing to a separate chip.™ This move allows the pho-
tosensor apertures to remain contiguous, but it reduces the
effective dynamic range on account of the amplifier that is
required to read the acquired signal off the photosensor array
chip. Very recently, analog VLSI capacitor networks have
been exploited® in connection with IR imaging systems.
Significant advances have been made in the rapidly devel-
oping technology of anulog VLSI image processors since the
last review™ of its history. Digital VLS] processors, by com-
parison, sacrifice the power and wiring economies inherent
in analog VLSI by orders of magnitude.”” but gain in flex-
ibility, stability, and accuracy.™

Thus far, analog VLSI implementations have considered
only spattal summations and differences. and a limited set of
nonlinear intensity transformations (mainly logarithmic).
Whether this technology will prove to be flexible enough to
encompass other vision computations is a key question for
future research. Perhaps the future of analog VLSI will be
best guaranteed if it proves to be capable of the computations
that provide a sort of universal front-end processing that sup-
ports a wide array of subsequent more specialized visual
computations. To the extent that analog VLSI can mimic
early natural vision, some confidence is justified that it is
providing a generic foundation upon which a variety of di-
verse vision systems can be based. Even if analog VLSI is
successful for universal vision-primitive computation, digital
processing will almost certainly enter the system design for
subsequent processing.

4 Performance

4.1 Small-Signal Linear Analysis

Figure 15 characterizes the information capacity #_ and the
maximum realizable fidelity ¥ as functions of the SFR
T(v,w:€.0) and the SNR Ko, /a, at the photosensor output
(1.e., before quantization). The SFR, in turn, is controlled by
the optical-response index & and the lateral-inhibition index
{ (Fig. 13). As the curves for K, reveal, the information
capacity depends critically on € (i.¢., on the trade-off between
aliasing and blurring) as a function of the SNR, consistent
with its dependence on the optical-design index v/2AF as
shown in Figs. 8 and 9. This dependence becomes now in-
tuitively appealing in terms of the restoration of fine detail
near the sampling lattice. At one extreme, when the SNR is
low, one would prefer to avoid substantial blurring because
the noise constrains the restoration. At the other extreme,
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when the SNR is high, one would prefer to avoid substantial
aliasing because the noise is no longer a constraint.

The curves for J_ also reveal that the loss of information
with increasing lateral inhibition is small for image-gathering
devices with SFRs (e.g., £=0.3) and SNRs (Ko, /7, =256)
that provide a high information capacity. but that it is large
for devices with the conventional SFR (i.c.. £=(.8) regard-
less of the SNR. Finally. the curves for both # and ¥ reveal
that the optical design that maximizes # also maximizes the
fidelity 7. Again, the loss of fidelity. like that of information,
1s small for a device with a high ¥ and comparatively large
foradevice with alow ¥ . Therefore, itis for the conventional
design that one can expect lateral inhibition to impair the
restoration of fine detail most severely.

Figure 16 characterizes the information capacity # . and
information efticiency #_ /¢ as functions of the number of
quantization levels. Lateral inhibition is not included. The
selection of quantization levels given in Table 2 for the two
informationally optimized designs favors information capac-
ity. A smaller number of quantization levels for these two
designs would increase the information efficiency. but only
at the cost of information and tidelity. However. for com-
mercial digital imaging systems, as characterized by design
I, the 8-bit quantization could be reduced to 5-bit quantization
to increase the information etficiency without loss in the
information capacity. In practice, the preferred m-bit quan-
tization can be matched to the standard 8-bit (or 12-bit) format
of commercial codece (encoder/decoder) methods, such as
JPEG. simply by assigning the coarse quantizations form =7,
6. and 5 to every second, fourth, or eighth level. respectively,
of the 8-bit standard.

Figure 17 characterizes the dynamic range compression
(ri/(ri,. the information capacity A, . and the information

efficiency J /¢ as functions of the lateral-inhibition index
{ for the three designs specitied in Table 2. The dynamic
range compression is given by the ratio

o I, b, (L) | TwE D] dv dw
ol [, (i)I‘(U,u))‘TA(U.UJ;g.())IJ dv do

(’)‘7

)

By suppressing the low SFR, lateral inhibition decreases the
within-passhand signal components relative to the aliased
signal components (see Fig. 13). Consequently, the interfer-
ence from aliasing increases strongly as the optical response
index € increases beyond 0.4 while the lateral-inhibition index
{ approaches 1. It is therefore not surprising that, as lateral
inhibition increases, #_ and # /¢ decrease significantly for
design 1, modestly for design 2, and negligibly for design 3.
For design 2, { = 0.7 provides a dynamic range compression
=4 and reduces the information capacity to ¥ =3 bifs: and
for design 3. the lateral inhibition with {=0.8 provides a
dynamic range compression =35 and reduces the information
capacity to J =4 bits. Both designs 2 and 3 represent rca-
sonable alternatives: the choice between them depends
mostly on the SNR that can be attained.

Figure 18 presents Wiener restorations for the three de-
signs specified in Table 2. The lateral-inhibition index is
either £ =0 or 0.8. Consistent with the curves for € and ¥
in Fig. 15, design 2 significantly improves on the resolution
and clarity attained with the conventional design 1. The im-
provement in visual quality for design 3 over that for design
2 is relatively small. This improvement requires significantly
higher SNR but not a higher data rate. Note. in particular,
that the lateral inhibition does not perceptibly impair the
visual quality for the two optimized designs. whereas it im-
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Table 2 Characteristics of conventional and informationally opti-
mized image gathering for p=1.

Design I3 Ko Jos,p  m bits Mg, bifs £, bits H/E
1 Conventional 0.8 16 8(5)" 1.8 7.5(4.6) 0.24(0.39)
2 Optimized 04 64 7 33 5.6 0.59
3 Optimized 0.3 256 8 42 5.6 0.75

*5-bit quantization may often be sufficient for the low information capacity H, of this

design.

pairs the already poorer visual quality for the conventional
design even further. Moreover, the theoretical minimum data
rate for the two optimized designs is a factor of 1.3 lower
than for the conventional design. Thus. the informationally
optimized design offers i lower data rate in addition to better
image quality and more robust dynamic-range compression.

4.2 Large-Signal Nonlinear Analysis

Image gathering with nonlinear conversion can be included
in Eqs. (1) by replacing the lincar gain K with the nonlincar
gain K(a). In practice, the nonlinearity is commonly tntro-
duced in the analog-to-digital converter. i.e.. after sampling
rather than before. However, the order of nonlinear conver-
sion and sampling can be interchanged mathematically.
Moreover, the nonlinear conversion atfects mostly the wide
dynamic range of the low-spatial-frequency components of
the radiance field without signiticantly distorting the high-
spatial-frequency detail that one wishes to enhance. There-
fore, in practice one can often interchange the order of non-
linear conversion and spatial convolution without introducing
serious errors.™

A common nonlinear conversion is given by the power
relationship™

st,:(K*])" Ha Moo (23)
which is illustrated in Fig. 19. This nonlincarity increases the
quantization density in the dark portions of the radiance field
at the expense of reducing it in the bright portions. For o = 2.
this relationship becomes the ““squarc-root’” coding often
found in image encoding and models of nonlinear responses
in human vision.*”

Figure 20 depicts three irradiance profiles that span the
width of the random target. The variation in the irradiance
is such that the average radiance field, as it would be measured
by a light meter, remains constant. The irradiance of the
shadowed region is a factor of either 5. 25, or 125 lower than
that of the bright region. These ratios encompass the varia-
tions in the depth of terrestrial shadows that one commonly
encounters.

Figure 21 characterizes the radiance tield that is the prod-
uct of the reflectances of the random target and the three
irradiances. It also characterizes the corresponding histo-
grams of the radiance field and acquired signal, and the im-
ages restored from this signal. Results are given for design
2 as specified in Table 2. The restorations include histogram
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Fig. 17 Characteristics of image gathering with lateral inhibition for the three designs specified in Table
1: (a) dynamic range compression, (b) information capacity, and (c) information efficiency.
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(b)

(c)

Fig. 18 Wiener restorations for (a) design 1, {b) design 2, and (c) design 3 characterized in Table 1.
The amount of lateral inhibition is ¢ = 0 for the upper two rows and { = 0.8 for the lower two rows.

equalization and edge enhancement. The latter is obtained
by letting the SFR T(v,w:£.{) in the Wiencr filter given by
Eq. (2) be Tt l=0) regardless of the value of { that is
actually used. In general. it is desirable to increase both non-
linearity and lateral inhibition as the shadow deepens. It is
then possible to resolve much of the structure of the scene
in the displayed image, even when the rudiance ficld with

the deep 125 : | shadow is compressed into the narrow
10 : 1 dynamic range of the image display.

It may be noted that the SNR for the average value of the
spatially varying irradiance was kept the same as for the
uniform irradiance, i.e., Ko, /o, = 64. Consequently, the ac-
tual SNR in the shadowed region is a factor of 3 lower than
this value for the 5 : I shadow, 13 for the 25 : | shadow,
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Fig. 19 Nonlinear radiance-to-signal conversion for k = 256.

and 63 for the 125 : | shadow. For the deepest shadow,
theretore, the SNR is only about unity. Yet the visual quality
of the restored images is not perceptibly impaired by notse.
This apparent robustness to noise results from the dynamic-
range compression of the noise as well as of the signal var-
iations by the nonlinearity of the film, which compresses the
contrastof dark and bright levels near the limits of its dynamic
range. However, if the spatial details in the shadowed region
are displayed with improved contrast (at the cost of over-
exposing the bright region), then the need for a higher SNR
becomes immediately apparent.

5 Concluding Remarks

The electro-optical design of the image-gathering device sets
an upper bound on both the angular resolution and the in-
formation capacity of visual communication systems. The
information capacity, in turn, sets upper bounds on the ef-
ficiency with which information can be transmitted and the
visual quality with which images can be restored.

The electro-optical design trade-offs involve a large num-
ber of design variables and hence a wide range of design
options. Nevertheless, if these trade-offs are optimized along
guidelines developed from communication theory, then they
lead inexorably to a design that is very similar to that of the
human eye. The performance with this design approaches
the maximum possible in terms of (1) the information ca-
pacity (¥, =5 bifs), (2) the information efficiency (¥ /¢ = 0.8
bifs/bit) of decorrelated data, and (3) the fidelity, sharpness,
and clarity of the restored image. If lateral inhibition, akin
to the retinal processing in the human eye, is included to
reduce the wide dynamic range of natural radiance fields,
then the information capacity for this design diminishes only
slightly to J_=4.5 bifs.

[t may often be well worth while to use some of the clever
mechanisms that the human eye employs to adapt to the wide
depth of field and dynamic range that it commonly encoun-
ters:

1. As the pupil diameter increases to compensate for a

decrease in scene illumination, aberrations increase to
counter the associated decrease in diffraction blur. Our
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Fig. 20 Irradiance profiles across the random target.

results show that this increase in aberrations helps to
maintain the informationally optimized relationship
between the SFR of the optical (pupil and photorecep-
tor) apertures and the sampling passband of the pho-
toreceptor lattice.

2. The angular sensitivity of the photoreceptors enhances
the SFR and its robustness to defocus. The same en-
hancement can be produced by shading the objective
lens with a variable transmittance.

3. The lateral inhibition in the retina acts like a second-
order differentiator to enhance the radiance-field tran-
sitions relative to the low-spatial-frequency compo-
nents. Our results show that this enhancement depends
critically on the relationship between the SFR and sam-
pling passband and that the preferred relationship is
the one that maximizes the information capacity.

4. The dynamic-range compression in the retina occurs
before the signal is converted to the pulses that are
transmitted to the visual cortex. A similar implemen-
tation in the charge domain of the photosensor array,
before a preamplifier reads the signal out to the analog-
to-digital converter, could increase the effective dy-
namic range by an order of magnitude or more with
little loss of information while decreasing the power
required for digital processing by several orders of
magnitude.
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